Hydrogeology Journal – Editors’ Choice Articles

The International Association of Hydrogeologists (IAH) is a scientific and educational charitable organisation for scientists, engineers, water managers and other professionals working in the fields of groundwater resource planning, management and protection. *Hydrogeology Journal* is the official journal of IAH.

“Editors’ Choice” articles are selected for special attention by the Hydrogeology Journal editorial team, for any of several good reasons including: outstanding science, innovative approach, potentially important conclusions, interesting field area or phenomenon, unusual topic, political/social/historical/philosophical interest, etc. At the conclusion of each publishing year, the Editors select several articles from among the year’s crop of about 150 peer-reviewed published articles. All articles selected since the start of the scheme (2010) are listed here.

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Vol(No): pages</th>
<th>DOI/link</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatemeh Rahimi-Feyzabad, Masoud Yazdanpanah, Saeed Gholamrezai, Mostafa Ahmadvand</td>
<td>Institutional constraints to groundwater resource management in arid and semi-arid regions: a Straussian grounded theory study</td>
<td>29(3): 925-947</td>
<td>https://doi.org/10.1007/s10040-020-02283-y</td>
</tr>
<tr>
<td>Paul Whincup</td>
<td>Darwin’s deep well at Down House, England (UK)</td>
<td>29(7): 2305–2311</td>
<td>https://doi.org/10.1007/s10040-021-02378-0</td>
</tr>
<tr>
<td>Authors</td>
<td>Title</td>
<td>Year</td>
<td>Volume</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>Ryan G. Smith, Hossein Hashemi, Jingyi Chen, Rosemary Knight</td>
<td>Apportioning deformation among depth intervals in an aquifer system using InSAR and head data</td>
<td>2020</td>
<td>29(7)</td>
</tr>
<tr>
<td>Jude Cobbing</td>
<td>Groundwater and the discourse of shortage in Sub-Saharan Africa</td>
<td>2020</td>
<td>28(4)</td>
</tr>
<tr>
<td>David Milo Ferris, Greg Potter, Grant Ferguson</td>
<td>Characterization of the hydraulic conductivity of glacial till aquitards</td>
<td>2020</td>
<td>28(5)</td>
</tr>
<tr>
<td>Giovanna De Filippis, Stefania Stevenazzi, Corrado Camera, Daniele Pedretti, Marco Masetti</td>
<td>An agile and parsimonious approach to data management in groundwater science using open-source resources</td>
<td>2020</td>
<td>28(6)</td>
</tr>
<tr>
<td>Lamine Boumaiza, Romain Chesnaux, Julien Walter, Christine Stumpp</td>
<td>Assessing groundwater recharge and transpiration in a humid northern region dominated by snowmelt using vadose-zone depth profiles</td>
<td>2020</td>
<td>28(7)</td>
</tr>
<tr>
<td>Fernando M. D’Affonseca, Michael Finkel, Olaf A. Cirpka</td>
<td>Combining implicit geological modeling, field surveys, and hydrogeological modeling to describe groundwater flow in a karst aquifer</td>
<td>2020</td>
<td>28(8)</td>
</tr>
<tr>
<td>Georg J. Houben</td>
<td>Teaching about groundwater in primary schools: experience from Paraguay</td>
<td>2019</td>
<td>27(2)</td>
</tr>
<tr>
<td>Tanya Brosnan, Matthew W. Becker, Carl P. Lipo</td>
<td>Coastal groundwater discharge and the ancient inhabitants of Rapa Nui (Easter Island), Chile</td>
<td>2019</td>
<td>27(2)</td>
</tr>
<tr>
<td>G. Thomas LaVanchy, Michael W. Kerwin, James K. Adamson</td>
<td>Beyond 'Day Zero': insights and lessons from Cape Town (South Africa)</td>
<td>2019</td>
<td>27(5)</td>
</tr>
<tr>
<td>Quoc Quan Tran, Patrick Willems, Marijke Huysmans</td>
<td>Coupling catchment runoff models to groundwater flow models in a multi-model ensemble approach for improved prediction of groundwater recharge, hydraulic heads and river discharge</td>
<td>2019</td>
<td>27(8)</td>
</tr>
<tr>
<td>Year</td>
<td>Author(s)</td>
<td>Title</td>
<td>DOI</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>-------</td>
<td>-----</td>
</tr>
<tr>
<td>2018</td>
<td>Michael O. Schwartz</td>
<td>The new Wallula CO₂ project may revive the old Columbia River Basalt (western USA) nuclear-waste repository project</td>
<td>10.1007/s10040-017-1632-y</td>
</tr>
<tr>
<td>2018</td>
<td>Giacomo Medici, L. J. West, N. P. Mountney</td>
<td>Characterization of a fluvial aquifer at a range of depths and scales: the Triassic St Bees Sandstone Formation, Cumbria, UK</td>
<td>10.1007/s10040-017-1676-z</td>
</tr>
<tr>
<td>2018</td>
<td>Konstantin Scheihing, Uwe Tröger</td>
<td>Local climate change induced by groundwater overexploitation in a high Andean arid watershed, Laguna Lagunillas basin, northern Chile</td>
<td>10.1007/s10040-017-1647-4</td>
</tr>
<tr>
<td>2017</td>
<td>Yousef Beiraghdar Aghbelagh, Jianwen Yang</td>
<td>Role of hydrodynamic factors in controlling the formation and location of unconformity-related uranium deposits: insights from reactive-flow modelling</td>
<td>10.1007/s10040-016-1485-9</td>
</tr>
<tr>
<td>2017</td>
<td>Caroline Lejars, Ali Daoudi, Hichem Amichi</td>
<td>The key role of supply chain actors in groundwater irrigation development in North Africa</td>
<td>10.1007/s10040-017-1571-7</td>
</tr>
<tr>
<td>2017</td>
<td>Garth van der Kamp, Randy Schmidt</td>
<td>Review: Moisture loading—the hidden information in groundwater observation well records</td>
<td>10.1007/s10040-017-1631-z</td>
</tr>
<tr>
<td>2016</td>
<td>Owen Powell, Rod Fensham</td>
<td>The history and fate of the Nubian Sandstone Aquifer springs in the oasis depressions of the Western Desert, Egypt</td>
<td>10.1007/s10040-015-1335-1</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Title</td>
<td>Abstract</td>
<td>Volume/Issue, Pages</td>
</tr>
<tr>
<td>----------</td>
<td>-------</td>
<td>----------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Laurence R. Bentley, Masaki Hayashi, Elena P. Zimmerman, Chris Holmden, Lynn I. Kelley</td>
<td>Geologically controlled bi-directional exchange of groundwater with a hypersaline lake in the Canadian prairies</td>
<td>24/4, 877–892</td>
<td>https://doi.org/10.1007/s10040-016-1368-0</td>
</tr>
<tr>
<td>Vijay Bhusari, Y. B. Katpatal, Pradeep Kundal</td>
<td>An innovative artificial recharge system to enhance groundwater storage in basaltic terrain: example from Maharashtra, India</td>
<td>24/5, 1273–1286</td>
<td>https://doi.org/10.1007/s10040-016-1387-x</td>
</tr>
<tr>
<td>Brian D. Smerdon, Chris Turnadge</td>
<td>Considering the potential effect of faulting on regional-scale groundwater flow: an illustrative example from Australia’s Great Artesian Basin</td>
<td>23/5, 949-960</td>
<td>https://doi.org/10.1007/s10040-015-1248-z</td>
</tr>
<tr>
<td>Zahra Jamshidzadeh, Frank T. -C. Tsai, Hasan Ghasemzadeh, Seyed Ahmad Mirbagheri, Majid Tavangari Barzi, Jeffrey S. Hanor</td>
<td>Dispersive thermohaline convection near salt domes: a case at Napoleonville Dome, southeast Louisiana, USA</td>
<td>23/5, 983-998</td>
<td>https://doi.org/10.1007/s10040-015-1251-4</td>
</tr>
<tr>
<td>A. Vandenbohede, E. Vandevyvere</td>
<td>Potable water for a city: a historic perspective from Bruges, Belgium</td>
<td>22/7, 1669-1680</td>
<td>https://doi.org/10.1007/s10040-014-1154-9</td>
</tr>
<tr>
<td>Jean-Christophe Comte, Jean-Lambert Join, Olivier Banton, Eric Nicolini</td>
<td>Modelling the response of fresh groundwater to climate and vegetation changes in coral islands</td>
<td>22/8, 1905-1920</td>
<td>https://doi.org/10.1007/s10040-014-1160-y</td>
</tr>
<tr>
<td>Year</td>
<td>Authors</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>2013</td>
<td>Guodong Cheng, Huijun Jin</td>
<td>Permafrost and groundwater on the Qinghai-Tibet Plateau and in northeast China</td>
<td>21/1, 5-23</td>
</tr>
<tr>
<td></td>
<td>Jean-François Cornu, David Eme, Florian Malard</td>
<td>The distribution of groundwater habitats in Europe</td>
<td>21/5, 949-960</td>
</tr>
<tr>
<td></td>
<td>François Henri Cornet</td>
<td>The relationship between seismic and aseismic motions induced by forced fluid injections</td>
<td>20/8, 1463-1466</td>
</tr>
<tr>
<td>2012</td>
<td>Martin O. Saar</td>
<td>Review: Geothermal heat as a tracer of large-scale groundwater flow and as a means to determine permeability fields</td>
<td>19/1, 31-52</td>
</tr>
<tr>
<td></td>
<td>Jean-Michel Lemieux</td>
<td>Review: The potential impact of underground geological storage of carbon dioxide in deep saline aquifers on shallow groundwater resources</td>
<td>19/4, 757-778</td>
</tr>
<tr>
<td></td>
<td>Yu Zhou, François Zwahlen, Yanxin Wang</td>
<td>The ancient Chinese notes on hydrogeology</td>
<td>19/5, 1103-1114</td>
</tr>
<tr>
<td>Authors</td>
<td>Title</td>
<td>Volume/Issue</td>
<td>DOI</td>
</tr>
<tr>
<td>---------</td>
<td>---------------------------------</td>
<td>-----------</td>
<td>-----</td>
</tr>
<tr>
<td>Lawrence D. Lemke, Joseph A. Cypher</td>
<td>Postaudit evaluation of conceptual model uncertainty for a glacial aquifer groundwater flow and contaminant transport model</td>
<td>18/4, 945-958</td>
<td>https://doi.org/10.1007/s10040-009-0554-8</td>
</tr>
<tr>
<td>Nico Goldscheider, Judit Mádl-Szőnyi, Anita Erőss, Eva Schill</td>
<td>Review: Thermal water resources in carbonate rock aquifers</td>
<td>18/6, 1303-1318</td>
<td>https://doi.org/10.1007/s10040-010-0611-3</td>
</tr>
<tr>
<td>Erick R. Burns, Larry R. Bentley, Rene Therrien, Clayton V. Deutsch</td>
<td>Upscaling facies models to preserve connectivity of designated facies</td>
<td>18/6, 1357-1373</td>
<td>https://doi.org/10.1007/s10040-010-0607-z</td>
</tr>
<tr>
<td>Elizabeth J. Screaton</td>
<td>Recent advances in subseafloor hydrogeology: focus on basement–sediment interactions, subduction zones, and continental slopes</td>
<td>18/7, 1547-1570</td>
<td>https://doi.org/10.1007/s10040-010-0636-7</td>
</tr>
</tbody>
</table>